In square $ABCD$, $E$ is the midpoint of $\overline{BC}$, and $F$ is the midpoint of $\overline{CD}$. Let $G$ be the intersection of $\overline{AE}$ and $\overline{BF}$. Prove that $DG = AB$.

Respuesta :

Draw DH perpendicular to AE.

By the Side-Angle-Side postulate ΔABE  = ΔBEF.

this is the enitre answer: https://web2.0calc.com/questions/in-square-abcd-e-is-the-midpoint-of-line-bc-and-f-is-the-midpoint-o...