Respuesta :
             y = |x - 3|
        3x + 3y = 27
    3x + 3|x - 3| = 27
    3x + 3|x - 3| = ±27
    3x + 3|x - 3| = 27     or      3x + 3|x - 3| = -27
    3x + 3(x - 3) = 27       or       3x + 3(x - 3) = -27
  3x + 3(x) - 3(3) = 27    or     3x + 3(x) - 3(3) = -27
      3x + 3x - 9 = 27      or         3x + 3x - 9 = -27
          6x - 9 = 27         or            6x - 9 = -27
            + 9   + 9                  + 9   + 9
            6x = 36             or              6x = -18
            6    6                   6    6
             x = 6           or            x = -3
             y = |x - 3|      or          y = |x - 3|
             y = |6 - 3|      or          y = |-3 - 3|
             y = |3|         or          y = |-6|
             y = 3          or          y = 6
          (x, y) = (6, 3)       or         (x, y) = (-3, 6)
The two systems of equations of the graph is only equal to (6, 3). It is not equal to (-3, 6) because one of the systems of equations - y = |x - 3| - only has one solution to the function. So the answer to the problem is 3 - (6, 3) is the solution to the system because it satisfies both equations.
        3x + 3y = 27
    3x + 3|x - 3| = 27
    3x + 3|x - 3| = ±27
    3x + 3|x - 3| = 27     or      3x + 3|x - 3| = -27
    3x + 3(x - 3) = 27       or       3x + 3(x - 3) = -27
  3x + 3(x) - 3(3) = 27    or     3x + 3(x) - 3(3) = -27
      3x + 3x - 9 = 27      or         3x + 3x - 9 = -27
          6x - 9 = 27         or            6x - 9 = -27
            + 9   + 9                  + 9   + 9
            6x = 36             or              6x = -18
            6    6                   6    6
             x = 6           or            x = -3
             y = |x - 3|      or          y = |x - 3|
             y = |6 - 3|      or          y = |-3 - 3|
             y = |3|         or          y = |-6|
             y = 3          or          y = 6
          (x, y) = (6, 3)       or         (x, y) = (-3, 6)
The two systems of equations of the graph is only equal to (6, 3). It is not equal to (-3, 6) because one of the systems of equations - y = |x - 3| - only has one solution to the function. So the answer to the problem is 3 - (6, 3) is the solution to the system because it satisfies both equations.